<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=1269321669886585&amp;ev=PageView&amp;noscript=1">

Inside Frequency Control

Common Misconceptions About Crystal Oscillator Stability

Posted by Bliley Technologies on Feb 2, 2020 10:14:00 AM

Common Misconceptions About Crystal Oscillator Stability.jpg

RF engineers would love to get their hands on ideal crystal oscillator circuits. That is, a quartz crystal oscillator that transmits at the designated frequency for the entire life of the device without any frequency deviation. Unfortunately, that ideal circuit world is a mathematical fantasy.

There are many factors that contribute to quartz oscillator stability and frequency drift issues. To prevent these problems as much as possible, having a firm understanding of precise frequency stability will help give you the tools to keep your applications performing optimally. But there's another problem...

Unfortunately, we've noticed there are many misconceptions out there in the world of crystal oscillator stability. More specifically, there tends to be a lot of FAQs regarding the different types of stability issues including...

  • Frequency vs. Temperature Stability
  • Frequncy vs. Load Stability
  • Frequency vs. Supply Stability
  • ADEV - Allan Deviation
In this post, you'll learn more about these different types of oscillator stability and how to manage them. You're about to be well on your way to becoming a pro at managing frequency drift in your applications!

Top Factors in Crystal Oscillator Stability


Oscillator Frequency vs. Temperature

Temperature is at the top of our list here because it is the most significant cause of frequency drift. Humidity and pressure can have an even greater effect measured in parts per billion, but these environmental influences are easily overcome by hermetically sealed packaging for the crystal, either in a vacuum or with an inert gas such as nitrogen.

Temperature presents a more difficult challenge. Shifts in temperature can cause frequency drift in the tens of ppm in the standard range, and worsen further at extreme temperatures.

Simple system level solutions such as cooling fans aren't practical for many applications but precise control can be designed into the oscillator integrated circuit (IC) itself to sense and compensate for ambient temperature changes.

As noted in this Electronic Circuit Design article, it's important for developers to understand that an oscillator's stability rating, typically characterized at 25 degrees C, does not represent the component's accuracy across the temperature range. The good news is that there are a variety of temperature compensation oscillators available.

  • TCXO - The Temperature Compensated Crystal Oscillator has an internal temperature sensor that the IC circuit uses to adjust the frequency of the crystal.
  • VCXO - The Voltage-Controlled Crystal Oscillator frequency can be adjusted by an externally applied voltage. VCXOs have a wide variety of applications in frequency modulation (FM) and phase-locked-loop (PLL) systems. A varactor diode, which is essentially a variable voltage capacitor, enables voltage control of the frequency.
  • OCXO - The Oven Controlled Crystal Oscillator is the most resilient to temperature change. The crystal is housed in an enclosure with specialized circuitry designed to heat the area surrounding the crystal maintaining a constant temperature and removing the need for further drift compensation. OCXOs provide the lowest drift under normal operating conditions.

Oscillator Frequency vs. Load

Capacitive loads affect frequency. Crystal oscillators must be matched to varying loads which account for the wide variety of crystal components available.

Maximum drive power must also be considered to prevent over-driving. If a quartz crystal is constantly exposed to overdriven conditions in excess of the anticipated maximum power, it can age quickly.

Even placement on the board can affect capacitive load, whether it's relocating the crystal itself or rerouting of other components. All of these are potential sources of mechanical resonance which have to be accounted for and tested in the oscillator circuit design process.

Oscillator Frequency vs. Supply

Alteration of the power supply load can cause a change in the effective resistance of the oscillator circuit leading to frequency drift. One solution is to use a regulated power supply, ensuring that the output voltage will always stay at the rated value of the power supply, regardless of the current that the device is consuming.

ADEV - Allan Deviation

allan deviation.jpg

Allan Variance and Allan Deviation measure frequency stability, named for mathematician David W. Allan who developed the formulas to measure frequency stability in clocks, oscillators, and amplifiers. Fun fact: We been fortunate enough to work closely with Mr. Allan throughout our history. 

There are two components of phase noise in these devices; white frequency noise, and flicker frequency noise which standard deviation could not resolve using direct repeatable measurements. ADEV provides a means to meaningfully separate noise-forms for time-series of phase or frequency measurements between two or more oscillators. You can dive into the math for more details at this report by home.engineering.iastate.com.

Frequency Stability Solutions at Bliley Technologies

At Bliley Technologies we have 85 years of experience crafting the universe's best high-performance frequency control products. Our extensive product lineup gives you the versatility to develop your applications with the proper balance of reliability and cost-effectiveness, so don't hesitate to contact us.

Common Oscillators

Topics: crystal oscillators, RF Technology