<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=1269321669886585&amp;ev=PageView&amp;noscript=1">

Inside Frequency Control

What Is Swept Quartz & Is It Necessary for Your Application?

Posted by Rob Rutkowski on Jul 18, 2024 9:00:00 AM

Swept quartz crystals are necessary in timing applications that require radiation resistance, but it's important to understand how they work and when you should use them. 

In this blog, we'll review what swept quartz crystals are, how they're manufactured, their common applications, and a common misconception about their benefits.

Read More

Topics: crystal oscillators, RF Technology

NTP Stratum Levels: What You Need to Know

Posted by Rob Rutkowski on Jul 10, 2024 9:00:00 AM

When it comes to NTP stratum levels and minimum performance requirements for digital network synchronization, there's definitely a lot to know. A standard first released in 1987 entitled "Synchronization Interface Standards for Digital Networks" from the American National Standards Institute (ANSI) lays out all the official information and requirements. 

Read More

Topics: RF Technology

How to Calculate Integrated Phase Deviation with Formulas

Posted by Rob Rutkowski on Jun 28, 2024 9:00:00 AM

With the advances of RF technology over the last many years, most modern spectrum analyzers can now automatically detect changes in phase noise levels (mostly of sine wave signals) measured in units of dBc or rads.

But it’s always a good idea for RF engineers to understand how modern spectrum analyzers measure integrated phase deviation. Or better yet, for them to understand how to optimize a spectrum analyzer’s measurements even further. Believe it or not, but many spectrum analyzer readings of phase noise can be significantly off.

Measuring phase noise deviations is easier than it sounds. All you really have to do is learn how to determine the Root Mean Square (RMS). This is done by calculating the ratio of power from the single-sideband (SSB) phase noise to the carrier.

Read More

Topics: RF Technology

Ultra-Stable Oscillators & 5 Elements That Affect Frequency Stability

Posted by Rob Rutkowski on Jun 20, 2024 9:00:00 AM

Here’s the scary thing…

Even if you sit for hours upon hours trying to set a precise initial frequency of an oscillator, it’s still going to drift and the oscillator will not be able maintain that frequency over the full course of its use. In this post, you’ll learn the many sources of frequency instability and why an ultra-stable OCXO may be the fix-all solution.

Read More

Topics: crystal oscillators, RF Technology, Integrated RF

Ka-Band & Ku-Band Systems: Basics & RF Design Considerations

Posted by Bliley Technologies on Jun 19, 2024 9:00:00 AM

What's the difference between Ka-band and Ku-band systems? In this article, we explore what they are,  what sets them apart, the advantages of each, and the design considerations you should keep in mind. 

Read More

Topics: engineering, crystal oscillators, RF Technology, Space & Satellites

3 Types of OCXOs & How They Establish Precise Frequency Control

Posted by Bliley Technologies on May 16, 2024 9:00:00 AM

Temperature variations are the most significant factor contributing to frequency drift in crystal oscillators.

Other variables that affect frequency output, such as humidity and pressure, can be alleviated easily with a hermetically sealed packaging of the crystal in a vacuum or in an inert gas, such as nitrogen. But controlling temperature for precise frequency output in a crystal oscillator circuit requires a higher level of electronic RF design ingenuity. Enter: the oven controlled crystal oscillator (OCXO).

In this post, we'll take a look at the three types of OCXOs available for RF engineers to meet individual design priorities such as frequency precision, warm-up time, crystal aging, and power consumption.

Read More

Topics: crystal oscillators, RF Technology

Low Phase Noise Oscillators for Radar & Communication Systems

Posted by Rob Rutkowski on Apr 26, 2024 9:00:00 AM

The #1 Most Critical Factor in High-End Radar & Communication Systems: Low Phase Noise

Phase noise, phase noise, phase noise.

If you’re involved with the design and implementation of communication systems, you most likely hear the term “phase noise” all the time (maybe more times than you’d like). 

There’s a good reason for all this phase noise chat. It’s one of the key factors that determines the overall success or failure of your radar or communications application. It’s even more important in intense environments where strong vibration or g-force is a concern.

Why is maintaining low phase noise such a concern in these applications and environments? And how can you solve the problems associated with the effects of phase noise? By the end of this article, you'll know why and how you should decrease phase noise in your applications.

Read More

Topics: crystal oscillators, RF Technology, Defense & PNT

Your Guide to Electronic Frequency Control Methods for Crystal Oscillators

Posted by Rob Rutkowski on Nov 21, 2023 9:00:00 AM

What's better than a crystal oscillator? A crystal oscillator combined with electronic frequency control (EFC)!

Of course, determining if EFC would be a good addition to your crystal oscillator circuit design (and if so, which method is best for you) comes down to your specific application and its requirements.

There are four options to choose from when selecting an electronic frequency control method for your crystal oscillator:

  1. Pulse width modulation (PWM) & low-pass filter (LPF)
  2. Reference RF signal & phase locked loop (PLL)
  3. Voltage divide
  4. Digital-to-analog converter (DAC)

In this post,  we'll take a closer look at each option and their best applications.

Read More

Topics: crystal oscillators, RF Technology

AT vs. SC-Cut Quartz Crystals: Is EFC Over-Specification Costing You?

Posted by Rob Rutkowski on Oct 12, 2023 9:00:00 AM

What if we told you that specifying more electronic frequency control (EFC) than you need could actually be hurting your company's wallet? Well, it very well may be!

Paying attention to whether your supplier is using AT-cut or SC-cut crystals will help you save money in the long run when it comes to oscillators. In this article, we'll review the difference between these two types of cuts and the impacts of EFC pull. 

Read More

Topics: crystal oscillators, Clocks & Crystals, RF Technology

Crystal Oscillator Manufacturers & RF Technology Best Practices

Posted by Bliley Technologies on Sep 14, 2023 9:00:00 AM

These are exciting times to be working in any field of engineering, but especially in the radio frequency (RF) industry. The modern economy simply cannot function without RF technology, and as we transition into a world of ever-faster mobile service, civilian and military space-based systems, and the Internet of Things (IoT), we’ll  rely increasingly on microwave, low-frequency engineering.

With all the rapid change in the industry and advancements in RF tech, it’s going to be more important than ever to find a crystal oscillator manufacturer that follows the best practices that have guided RF engineers in the past and will continue to in the future.

In this article, we'll provide a basic overview of the RF technology best practices your crystal oscillator manufacturer should be following.

Read More

Topics: RF Technology, general

GPSDO Oscillator Infrastructure Ebook.png

Subscribe... get an eBook!

See What's Popular

Disclosure: This blog contains product affiliate links to help support the blog. We only link trusted, well-rated products.